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Boundary length and internal surface area 
measurements in porous materials with 
elliptical pores 
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Formulae are derived for the stereological determination of boundary length per unit area, BA, 
and surface density, Sv, in materials with elliptically shaped pores. These relationships are 
valid for two-phase solids with orthotropically distributed internal surfaces (surfaces that can 
be mapped onto an ellipsoid). Maximum and minimum mean intercept length measurements 
in a plane are needed to calculate BA. Mean intercept length measurements in the three prin- 
cipal directions of porous symmetry are necessary to calculate Sv. If the principal directions are 
not known they can be found by calculating the eigenvectors of a second rank tensor called 
the mean intercept length tensor. In a material with a transversely isotropic distribution of 
internal surfaces (surfaces that can be mapped onto a spheroid), mean intercept length 
measurements along and transverse to the axis of symmetry are needed to calculate Sv. 

Nomencla ture  
Sv Surface density (internal surface area divided 

by test volume) (mm2mm-3). 
S/V Internal surface area divided by volume of 

voids (mm 2 mm-3). 
BA Profile boundary length divided by test area 

(~m mm- 2 ). 
B/A Profile boundary length divided by area of 

voids (ram ram-2). 
Pc Number of profile boundaries intersected by a 

test line divided by the length of the test line 
(ram-l). 

MIL Mean intercept length l/Pc (mm). 
MPC Mean chord length of the pores within a test 

area in a given direction (mm). 
MSC Mean chord length of the solid matrix within 

a test area in a given direction (mm). 
Lc Lineal solid fraction (length solid passed 

through by a test line divided by the total 
length of the test line). 

AA Solid area fraction (fraction of solid area per 
test area). 

Vv Solid volume fraction (fraction of solid vol- 
ume per test volume). 

1. Introduct ion 
Quantitative stereology is the characterization of three 
dimensional geometries within a specified volume 
from measurements made on a plane (or several planes) 
cut through that volume. Stereological measurements 
include measurement of volume, surface, orientation, 
and number of features. Basic stereological relation- 
ships are compiled by Underwood [1], DeHoff and 
Rhines' [2], and Elias [3]. In this paper we are con- 
cerned with the stereological relationship between lineal 
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measurements and internal surface in porous materials 
with elliptical pores. 

Internal surface area is an important measurement 
in the study of many engineering and biological 
materials. Internal surface area is a function of pore 
size. This property along with porosity are major 
factors responsible for the mechanical property 
characteristics of porous engineering materials. In 
many biological systems function depends upon the 
rate at which activities occur at a surface. The overall 
rate of function in these systems is surface-dependent. 
Therefore, from a physiological standpoint, surface 
area measurements are very meaningful. Some surface- 
dependent functions are remodelling of bone, gas 
transfer in the lung, and filtration in the glomeruli of 
the kidney. 

In materials with isotropic internal surface, meaning 
that the normals to the measured surface are randomly 
distributed, surface density, Sv, can be found easily by 
a simple point count on sections of the material. The 
relationship between Sv and the lineal point count, Pc, 
is derived in [1-3]. 

Sv = 2/'c (1) 

Elias [3] presented a simple model for measuring Sv in 
isotropic porous materials. He assumed that if one 
distribution of internal surfaces is isotropic, surface 
elements can be rearranged onto the surface of a 
sphere. Furthermore, he asserted that this model is 
correct for the internal surface area of a porous 
material whether the voids are spherical or not, as long 
as they are randomly arranged in space. Whitehouse [4] 
restated this model and showed that if an isotropic 
porous material underwent linear expansion or con- 
traction in a given direction, surface elements could be 
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mapped onto a spheroid. In a similar fashion, we will 
assume that if an isotropic porous material undergoes 
linear expansion or contraction in two (or three) 
orthogonal directions, surface elements can be 
rearranged upon the surface of an ellipsoid. We will 
also assume that the dimensions of  this ellipsoid can 
be related to stereological measurements along its axes 
of symmetry. 

The analog to  surface density in two dimensions is 
boundary length per unit area, BA. In isotropic porous 
materials BA is proportional to PL and therefore 
proportional to Sv [1-3]. However if the isotropic 
relationship is extended to anisotropically porous 
materials, significant errors can result. Whitehouse [4] 
analysed the special cases of isotropic porous materials 
which have become anisotropic as a result of linear 
expansion or contraction in a given direction. Such 
materials have porous symmetry that has one preferred 
direction and can be referred to as transversely iso- 
tropic. He determined, numerically, the proportionality 
constant between Sv and BA for models with varying 
degrees of directionality or anisotropy. The results 
showed that in materials with transversely isotropic 
surfaces, this proportionality constant is highly depen- 
dent on the plane of  measurement and degree of  
anisotropy. 

The derivations presented in this paper are based 
on the assumption that many anisotropic porous 
materials have porous symmetry that is ellipsoidal. For 
example, this was shown to be true in cancellous 
bone by Whitehouse [5], and Harrigan and Mann 
[6]. Whitehouse found that mean intercept lengths 
measured in various directions in a plane of  cancellous 
bone correlated well with the equation of  an ellipse. 
Harrigan and Mann furthered this work by showing 
that similar elliptical symmetries existed in each of  
three orthogonal planes. They noted that these ellipses 
were projections of  an ellipsoid and, by the theory of  
quadratic forms, could be represented as a second rank 
tensor. They called this tensor the mean intercept length 
tensor (see [6] for a description of  the stereological 
measurement of  the mean intercept length tensor). 
The eigenvectors of the tensor represent the directions 
of  the axes of  symmetry in this type of  anisotropic 
porous material. Because the 3-dimensional porous 
symmetry is ellipsoidal, it can be referred to as ortho- 
tropic. In this type of porous material, surface elements 
can be mapped onto an ellipsoid. 

2. BA measurements 
In materials with isotropic porous symmetry, BA is 
proportional to a linear point count. 

BA = ~ PL (2) 

In materials with anisotropic porous symmetry, PL 
varies as a function of  the direction of  measurement. 
If  the porous symmetry is assumed to be ellipsoidal, a 
plane cut through the materials will have a boundary 
profile that is, in general, elliptical. The inverse of  PL, 
called mean intercept length, is a more meaningful 
measurement because it is proportional to the average 
pore dimensions within a test area. It is assumed that 
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the average pore symmetry is elliptical so the average 
pore dimensions are those of  an ellipse. The radii of  
this ellipse, a and b, are related to mean intercept 
lengths along the principal axes, MILl  and MIL2, as 
follows: 

a , b  = -4(1 - AA)MILI ,  MIL2 (3) 
7~ 

(derived in Appendix A). The total profile boundary 
length divided by the area of voids is equal to the 
boundary length of  an ellipse of  average pore dimen- 
sions divided by its area. The boundary length of an 
ellipse, with principle radii a and b, is expressed as an 
elliptic integral of the second kind [7]. 

B = 4 I2/2 [a 2 - ( a  2 - b 2) sin20] 1/2 dO (4)  

A common approximation o'f elliptical boundary 
length is found in [8]: 

B - 2zc[�89 2 + b2)] '/2 (5) 

Boundary length divided by the area of  an ellipse, 
B/A, is 

B/A = B/(rcab) ~- 2[�89 2 + b-2)]l/z (6) 

Combining Equations 3 and 6 gives: 

B/A - ~z [~MIL~ 2 + MIL22)] 1/2 (7) 
2(1 - AA) 

B A is proportional to B/A by the areal porosity which 
is a function of  the solid area fraction, AA. 

B 
B A = ~ ( 1  --  AA) (8) 

Therefore, by combining the above equations, 

rc [~{MIL~2 + MIL22)]I/2 (9) BA~--~ 
The result reduces to Equation 2 when MILl  = 

MIL2. Principal mean intercept lengths, MILl  and 
MIL2, must be known to calculate B A. If  the axes of  
porous symmetry are known, these measurements can 
be made directly. However, if the axes of symmetry are 
not known, mean intercept lengths must be measured 
in various directions within the test area to fully 
characterize the orthotropic porous symmetry in a 
plane. Mean intercept lengths measured at vari- 
ous angles, 0, are fitted to the equation of  an ellipse 
[61. 

Axx cos20 + Ayy sin20 

+ 2Axy cos0sin0 = (10) 

From the coefficients Axx, Ayy and Axy the principal 
mean intercept lengths can be determined. 

MILl  = {.(Axx 
+ Ayy) 

2 

--  Ayy) 2 2 1/2 1/2 



T A B L E  I Boundary length per area B A and mean intercept length MIL data for cancellous bone specimens 

Specimen Measured B A Maximum M1L Minimum MIL B A (Equation 9) 
No. (mm 1) (mm) (ram) (ram- 1 ) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

2.767 0.579 0.471 3.039 
1.889 1.073 0.706 1.883 
2.097 0.974 0.530 2.386 
1.462 1.074 0.946 1.565 
2.194 0.822 0.513 2.551 
2.697 0.736 0.498 2.692 
2.573 0.797 0.527 2.528 
3.212 0.565 0.435 3.222 
2.187 0.898 0.582 2.274 
2.625 0.690 0.539 2.615 
3.505 0.468 0.417 3.566 
1.322 1.630 0.851 1.472 
t.718 0.922 0.835 1.795 
1.259 1.686 1.141 1.175 
1.926 1.031 0.730 1.865 
1.496 0.997 0.956 1.601 
1.844 1.312 0.812 1.609 
1.633 1.127 1.010 1.477 
1.453 1.329 1.074 1.330 
1.459 1.595 1.137 1.200 

3.269 0.686 0.399 3.219 
3.274 0,.660 0.453 2.972 
3.198 0.762 0.390 3.199 
3.676 0.721 0.371 3.368 
3.076 0.682 0.450 2.959 
3.032 0.646 0.451 3.005 
3.439 0.821 0.385 3.185 
3.650 0.752 0.348 3.518 
2.681 0.861 0.531 2.459 
3.225 0.835 0.369 3.292 
2.967 0.864 0.353 3.396 

MIL2 
.(Axx q- Ayy) 

2 

--  Ayy) 2 
02) 

3. E x p e r i m e n t a l  m e a s u r e m e n t s  o f  B A 
Sections of  cancellous bone from both a bovine and a 
human femoral condyle were analysed stereologically 
on an automated microstructural analysis system. 
MIL~, MIL2 and BA were measured and are given in 
Table I. The results are shown in Fig. 1. The calcu- 
lated values for BA, using Equation 9, compared 

c~ 
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to the measured values very well (Baca~ = 0.07 + 
0.97BA .. . .  ; r = 0.971). 

4. Sv measurements 
This analysis is designated to materials, like cancellous 
bone, which have elliptical porous symmetry. Further- 
more, it is assumed that within a given volume of such 
a material, surface elements can be rearranged upon 
an ellipsoid which represents the average dimensions 
of  all pores in that volume. The relationship between 
the radii of the ellipsoid, a, b and c, and the principal 
mean intercept lengths, MIL~, MIL 2 and MIL3, is 
derived in Appendix B. 

Figure 1 Comparison between B A calculated using Equation 9 and 
B A measured in cancellous bone specimens from a femoral condyle. 
O, data from human bone; • data from bovine bone. 
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a, b, c = 3(1 - Vv)MILI,  MIL2, MIL3 (13) 

The surface area of  an ellipsoid, with principal radii 
a, b and c, is expressed as an elliptic integral [9]. 

= 2~c 2 + 2rtab fd (1 - klk2u 2) S 

x [(1 - klu:)(1 - k2u2)] -1/2du (14) 

(a 2 - c z) 
k I - a 2 

(b ~ - c 2) 
k2 - b z 

The solution to this equation requires restrictions on 
the constants, kl and k2, such that no single analytical 
solution exists for all values of  a, b and c. Therefore, 
a closed-form approximation was derived empirically. 
The resulting approximate equation is 

47~ 
- ({~[a +~(b  + c-2)]} '/2 S - ~ - ~ - ( 1  e) abe 1 -2 1 -2 

+ { } [ b  - z  + }(c -2 + a - 2 ) ] }  1/2 

+ {�89 -2 -k- �89 -2 -a t- b-2)]} '/2) 

(15) 

e = 0.0339{1 - exp [0.42(1 - a/c)]} 

+ 0.083{1 - exp [0.25(1 - b/c)]} 

wherea  > b > c 

Surface areas calculated using this formula are accurate 
to within 1% for all values of a, b and c with the 
restriction that a > b > c. 

Total surface area divided by the volume of  voids, 
S/V, within a test volume, is assumed to be the same 
as the surface area of  the ellipsoidal model divided by 
its volume. The radii of  this ellipsoid, a, b and c, can 
be calculated from M I L  measurements using Equa- 
tion 13 and 

S 
S / V  = (16) 

(47t/3)abe 

Surface density, Sv, is proportional to S / V  by the 
volumetric porosity which is a function of  the volume 
fraction, Vv. 

S 
sv = F (1 - vv) (17) 

By combining Equations 13, 15, 16 and 17, Sv is 
expressed as a function of  the principal mean intercept 
lengths. 

Sv ~- {(1 - e) ({�89 -2 + �89 2 + MIL32)]} l/2 

+ {�89 2 + �89 z + MILl2)]} ~/2 

+ {�89 + �89 2 + MIL;2)]} '/2) 

(18) 
e = 0.0339(1 - exp {0.42 [1 -- MIL~/MIL3)]}) 

+ 0.083(1 - exp {0.2511 - MIL2/MIL3)]}) 

where MILl  > MIL2 > M I L  3. The result reduces to 
Equation 1 when MIL~ = M I L  2 = M I L  3. Mean 
intercept lengths in the three principal directions must 
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be measured to calculate Sv in a material with ortho- 
tropic porous symmetry. If  the principal directions of  
porous symmetry are not known, they can be found 
by calculating the eigenvectors of the mean intercept 
length tensor described by Harrigan and Mann [6]. 
Briefly, the mean intercept length tensor is measured 
by making mean intercept length measurements in 
various directions on three orthogonal planes within a 
test volume. Mean intercept length measurements in a 
given plane (designated the 1-2 plane) can be curve fit 
to the following equation [6]: 

All COS20 + A22 sin20 + 2A12 sin0cos0 

= [1 /MIL(O)]  2 (19) 

In the other two orthogonal planes 

A22 c0s20 + A33 sin20 + 2A23 sin0cos0 

= [1/MIL(O)] 2 (20) 

A33 COS20 q- All sin20 + 2A31 sin0cos0 

= [1/MIL(O)] 2 (21) 

where A u are components of  the mean intercept length 
tensor. The eigenvalues of  this tensor are 

(1~MILl) 2 0 0 

0 (I /MIL2) 2 0 
(22) 

0 0 (1/MIL3) 2 

MILl  > MIL2 > M I L  3 

MIL l ,  M I L  2 and MIL3 are the mean intercept lengths 
in each of  the three principal directions. 

5. Discussion 
In general, stereological measurements must be made 
on three orthogonal planes to determine MILl ,  M I L  2 
and M I L  3 in orthotropically porous materials. 
However, if the axes of  porous symmetry are known, 
measurements on two planes of  symmetry are suf- 
ficient. 

There are two distinct cases of transversely isotropic 
porous symmetry. The first is when surface elements 
can be mapped onto an oblate spheroid (MILl  = 
MIL2). The second is when surface elements can be 
mapped onto a prolate spheroid (MIL2 = MIL3). If a 
material has transversely isotropic porous symmetry, 
and the axis of  symmetry is known, measurements on 
only one plane, which includes the axis of symmetry, 
is necessary for surface area calculation. 

This analysis was directed toward porous materials 
with elliptical pores, however, the results are general 
to all two-phase materials with internal surfaces that 
can be rearranged onto an ellipsoid. 

6. Conclusions 
Closed formed equations have been found for bound- 
ary length per area, BA, and surface density, Sv, for 
porous materials with elliptical pores. BA and Sv are 
solely functions of  mean intercept length measure- 
ments along the axes of porous symmetry. 
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Appendix A 
In a porous material, mean intercept length, MIL, is 
the average of  the mean solid chord length, MSC, and 
the mean pore chord length, MPC. 

MIL = (MSC + MSC) (A1) 
2 

Lineal fraction of  solid, LL, is 

MSC 
L L = (A2) 

(MSC + MPC) 

SO 

MPC = (1 - LL)2MIL (A3) 

If  these measurements are averaged over the entire test 
area, average LL is equal to AA [1--3]. The above 
equation becomes 

MPC = (1 - AA)ZMIL (A4) 

MPC can be related to the average pore dimensions, 
a and b, by assuming that MPC represents the average 
of uniformly distributed chord lengths across an ellipse 
of  average pore dimensions. If the principal radius, a, 
corresponds with the 1-direction, MPCt can be found 
by averaging chord lengths in the 1-direction over the 
diameter in the 2-direction, 2b. The integral of  all 
chord lengths in a given direction is the area of the 
ellipse. MPG will be 

nab na 
- - ( A 5 )  

2b 2 
MPC~ 

Likewise, 

Therefore, by combining Equations A4, 

a,b 

nb 
MPC2 = ~ -  (A6) 

A5 and A6: 

4 (1 AA)MIL1, MILz (A7) 
n 

Appendix B 
In porous materials mean intercept length, M/L, is 
related to mean pore chord length, MPC, by 

MPC = (1 - AA)ZMIL (B1) 

(derived in Appendix A). If  mean intercept length 

measurements are averaged over the entire test volume, 
average AA equals Vv [1-3]. 

MPC = ( 1 -  Vv)2MIL (B2) 

It is very difficult to average these measurements 
over the entire test volume without destroying the 
specimen. Therefore measurements made on six faces 
of  a cubic specimen are assumed to represent the 
average properties of the specimen. MPC can be 
related to the radii of  an ellipsoid that has average 
pore dimensions by averaging pore chord lengths in 
one direction within an ellipsoid. If the 1-direction 
corresponds to the principal radius a, of  the ellipsoid, 
MPC1 can be found by integrating all chord lengths in 
the 1-direction and dividing by the cross-sectional 
area transverse to the 1-direction. The integral of  all 
chord lengths in a given direction within an ellipsoid 
is the volume of  the ellipsoid. 

Therefore, MPC~ is 

(4n/3)abc 
MPC, = = 4a/3 (B3) 

(nbc) 

By combining Equations B2 and B3 

a = 3(1 -- Fv)MILI (B4) 

Similarly, b and c are 

b = 23(1 - Vv)MIL2 (B5) 

c = 23-(1 - Vv)MIL3 (B6) 
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